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This paper extends the previous economic order quantity (EOQ) models under two-level trade credit such as Goyal (1985), Teng
(2002), Huang (2003, 2007), Kreng and Tan (2010), Ouyang et al. (2013), and Teng et al. (2007) to reflect the real-life situations
by incorporating the following concepts: (1) the storage capacity is limited, (2) the supplier offers the retailer a partially upstream
trade credit linked to order quantity, and (3) both the dispensable assumptions that the upstream trade credit is longer than the
downstream trade credit𝑁 < 𝑀 and the interest charged per dollar per year is larger than or equal to the interest earned per dollar
per year 𝐼

𝑐
< 𝐼
𝑒
are relaxed. We then study the necessary and sufficient conditions for finding the optimal solution for various cases

and establish a useful algorithm to obtain the solution. Finally, numerical examples are given to illustrate the theoretical results and
provide the managerial insights.

1. Introduction

Trade credit financing is a crucial issue and increasingly
recognized as important means to increase profitability in
a production-inventory system. In practice, the supplier
usually allows the wholesaler a fixed permissible delay period
for settling the account (i.e., an upstream trade credit) and
the wholesaler in turn provides a similar credit period to its
customers (i.e., a downstream trade credit). It is well known
that the permissible delay in payments has two benefits:
(1) it invites new buyers who consider it to be a type of
price reduction, and (2) it may be useful as an alternative
to price discount because it does not aggravate competitors
to decrease their prices and thus introduce permanent price
reductions (e.g., [1]).

In 1985, the EOQ model with upstream trade credit was
first proposed by Goyal [2]. Following, prolific extensions of
his model have been developed by researchers. For example,
Aggarwal and Jaggi [3] extended Goyal’s [2] model for

the deteriorating items. Jamal et al. [4] further generalized
Aggarwal and Jaggi’s [3] model to allow for shortages. Teng
[5] amended Goyal’s [2] model by considering the different
between unit price and unit cost and found that it makes
economic sense for a well-established wholesaler to order
less quantity and take the benefits of payment delay more
frequently. Chang et al. [6] developed an EOQ model for
deteriorating items under supplier’s upstream trade credit
linked to ordering quantity. Liang and Zhou [7] established
a two-warehouse inventory model for deteriorating items
under conditionally permissible delay in payment. There are
several interesting and relevant papers related to the trade
credits, for example, Huang [8], Ouyang et al. [9], Chen et al.
[10] Chung and Huang [11], Hu and Liu [12], Min et al.
[13] Giri et al. [14], Khanra et al. [15], Sarkar [16], and so
forth. Nerveless, all inventory models described above only
considered an upstream trade credit.

Huang [17] extended Goyal’s [2] model to establish an
EOQ model under two levels of trade credit policy with
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the downstream trade credit period 𝑁 being less than the
upstream trade credit period 𝑀. Later, Kreng and Tan [18]
modified Huang’s [17] model by considering the upstream
trade credit linked to the ordering quantity. Recently, Ouyang
et al. [19] not only complemented the shortcomings in
Kreng and Tan [18] on the interest earned and charged, but
also relaxed those dispensable assumptions such that the
downstream trade credit period is less than the upstream
trade credit period. Other interesting and relevant papers
related to two-level trade credit such as Teng et al. [20], Liao
[21], Goswami et al. [22], Min et al. [23], Ho [24], and others.

In addition, it is observed that the classical inventory
models generally deal with single storage facility. The basic
assumption in these models is that the manager owns a
storage room with unlimited capacity. However, in practice,
the manager may purchase a huge quantity of goods at a
time for some reasons such as when suppliers provide price
discounts for bulk purchases or trade credits to encourage the
retailer to buymore.These huge stocks cannot be stored in the
existing storage (the own warehouse) with limited capacity.
Therefore, a rented warehouse (RW) is needed to store the
excess units over the capacity of the own warehouse. An early
discussion on the inventory model with two-warehouse was
given by Hartely [25]. Further literatures in this direction
include Sarma [26], Dave [27], Goswami andChaudhuri [28],
Pakkala and Achary [29], Bhunia andMaiti [30], Benkherouf
[31], Yang [32], Huang [33], Lee and Hsu [34], Sett et al. [35],
and others.

Consequently, to reflect the real-life situations, this paper
extended the previous EOQ models with two-level trade
credit such as Goyal [2], Teng [5], Huang [8, 17], Ouyang et
al. [19], and Teng et al. [20] by incorporating the following
concepts: (1) the storage capacity is limited, (2) the supplier
offers the retailer a partial upstream trade credit linked to
order quantity, and (3) both the dispensable assumptions of
the upstream trade credit is longer than the downstream trade
credit 𝑁 < 𝑀 and the interest charged per dollar is larger
than or equal to the interest earned per dollar 𝐼

𝑐
< 𝐼
𝑒
are

relaxed.
The rest of this paper is organized as follows. In Section 2,

we describe the notation and assumptions adopted through-
out this paper. Then, mathematical models are developed to
minimize the total costs per year in Section 3 for various
cases. In Section 4, we study the necessary and sufficient
conditions and establish several theoretical results for finding
the optimal solution under various situations. Numerical
examples and sensitivity analysis with major parameters are
given to illustrate the theoretical results and obtain some
managerial insights in Section 5. Finally, conclusions are
given in Section 6.

2. Notation and Assumptions

The notation used throughout this paper is as follows:

𝐷: the demand rate per year;
𝐴: the ordering cost per order;
𝑐: the purchasing cost per unit;

𝑝: the selling price per unit, with 𝑝 > 𝑐;
ℎ: the unit holding cost per year excluding interest
charge in own warehouse (OW);
𝑘: the unit holding cost per year excluding interest
charge in rented warehouse (RW), with 𝑘 > ℎ;
𝐼
𝑒
: the interest earned per dollar per year;

𝐼
𝑐
: the interest charged per dollar per year;

𝛼: the fraction of the delay payments permitted by the
supplier if the order quantity is less than the preassign
quantity, 0 ≤ 𝛼 ≤ 1;
𝑀: the wholesaler’s trade credit period in years
offered by the supplier;
𝑁: the retailer’s trade credit period in years offered by
the wholesaler;
𝑊: the capacity in own warehouse;
𝑇
𝑊
: the time interval in which maximum inventory

in own warehouse is depleted to zero; that is, 𝑇
𝑊

=

𝑊/𝐷;
𝑄
𝑑
: the minimum order quantity at which full delay

in payments is permitted;
𝑇
𝑑
: the time interval in which the quantity 𝑄

𝑑
is

depleted to zero, that is, 𝑇
𝑑
= 𝑄
𝑑
/𝐷;

𝑇: the length of replenishment cycle in years;
𝑄: the order quantity, where 𝑄 = 𝐷𝑇;
𝑇
∗: the optimal length of replenishment cycle time in

years;
𝑄
∗: the optimal order quantity.

The models proposed in this paper are based on the
following assumptions.

(1) Demand rate is known and constant.
(2) Time horizon is infinite.
(3) Replenishment is instantaneous and shortages are not

allowed.
(4) If the order quantity 𝑄 is greater than 𝑊, then the

wholesaler needs to rent an additional warehouse to
hold inventory.

(5) If the wholesaler’s order quantity 𝑄 is greater than or
equal to 𝑄

𝑑
, then fully delayed payment is permit-

ted by its supplier. Otherwise, the partially delayed
payment is permitted. That is, the wholesaler must
take a loan to pay its supplier the partial payment of
(1−𝛼)𝑐𝑄 immediately when the order is received and
then pay off the loan with entire revenue.

(6) The wholesaler offers a credit period 𝑁 to every
retailer.

(7) During the credit period 𝑀(> 𝑁), sales revenue
is deposited in an interest bearing account with the
rate 𝐼

𝑒
. At the end of the permissible delay 𝑀, the

wholesaler pays off all units sold, keeps the profit
for use in other activities, and starts paying for the
interest charges with the rate 𝐼

𝑐
on loan.
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3. Model Formulation

From assumptions, as 𝑄 ≥ 𝑄
𝑑
(i.e., 𝑇 ≥ 𝑇

𝑑
), the full

delay in payment is permitted. Otherwise, the partial delay
in payment is permitted where the wholesaler must pay the
supplier the amount (1 −𝛼)𝑐𝐷𝑇 immediately when the order
is filled and pay the rest at the time 𝑀. Furthermore, if the
order quantity𝑄 is greater than𝑊, then the wholesaler needs
to rent an additional warehouse to hold inventory.

The annual total relevant cost consists of the following
elements.

(a) The ordering cost per year (say OC) is

OC =
𝐴

𝑇
. (1)

(b) The holding cost per year excluding interest charges
(say HC) is

HC = {
HC
1
, if 𝑄 ≤ 𝑊 (i.e., 𝑇 ≤ 𝑇

𝑊
) ,

HC
2
, if 𝑄 > 𝑊 (i.e., 𝑇 > 𝑇

𝑊
) ,

(2)

where

HC
1
=

ℎ𝐷𝑇

2
, (3)

HC
2
=

[ℎ𝑊 (2𝐷𝑇 − 𝑊) + 𝑘(𝐷𝑇 − 𝑊)
2

]

(2𝐷𝑇)

=

[ℎ𝐷𝑇
𝑊

(2𝑇 − 𝑇
𝑊
) + 𝑘𝐷(𝑇 − 𝑇

𝑊
)
2

]

(2𝑇)
.

(4)

(c) Interest earned and the interest charged.
As to calculate the interest earned and interest charged,

there are two possible cases that should be considered: when
𝑄 ≥ 𝑄

𝑑
(i.e., 𝑇 ≥ 𝑇

𝑑
), the full delay in payment is permitted;

otherwise, the partial delay in payment is permitted where
the wholesaler must pay the supplier the amount (1 − 𝛼)𝑐𝐷𝑇

immediately when the order is filled and pay the rest at the
time 𝑀. That is, there are two cases that might arise: (i) full
delay in payments (𝑇 ≥ 𝑇

𝑑
) and (ii) partial delay in payments

(𝑇 < 𝑇
𝑑
).

Case 1 (full delay in payments (𝑇 ≥ 𝑇
𝑑
)). Based on the values

of 𝑀, 𝑁, and 𝑇 + 𝑁, we have the following three alternative
situations: (1) 𝑀 ≥ 𝑇 + 𝑁 > 𝑁, (2) 𝑇 + 𝑁 ≥ 𝑀 > 𝑁, and
(3) 𝑇 + 𝑁 > 𝑁 ≥ 𝑀. Let us discuss them accordingly.
(1) 𝑀 ≥ 𝑇 + 𝑁. In this situation, the wholesaler receives the
total revenue at time 𝑇+𝑁 and is able to pay the supplier the
total purchase cost at time 𝑀 (see Figure 1). Consequently,
the interest charged per year (say IC11) is

IC
11

= 0, (5)

and the interest earned per year (say IE11) is

IE11 =
𝑝𝐼
𝑒
𝐷𝑇
2

2𝑇
+

𝑝𝐼
𝑒
(𝑀 − 𝑇 − 𝑁)𝐷𝑇

𝑇

= 𝑝𝐼
𝑒
𝐷 (𝑀 − 𝑁) −

𝑝𝐼
𝑒
𝐷𝑇

2
.

(6)
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Figure 1: 𝑄 ≥ 𝑄
𝑑
and 𝑁 < 𝑇 + 𝑁 ≤ 𝑀.

(2) 𝑇 + 𝑁 ≥ 𝑀 > 𝑁. In this situation, the wholesaler will
sell the items and uses the sales revenue to earn interest at the
rate 𝐼
𝑒
in the interval [𝑁,𝑀] (see Figure 2(a)). On the other

hand, the wholesaler receives the pay after 𝑁 and pays off all
units sold at time𝑀 and starts paying for the interest charges
with the rate 𝐼

𝑐
on items sold after 𝑀 (see Figure 2(b)). As a

result, the interest charged per year (say IC12) is

IC12 =
𝑐𝐼
𝑐
𝐷(𝑇 + 𝑁 − 𝑀)

2

2𝑇
, (7)

and the interest earned per year (say IE12) is

IE12 =
𝑝𝐼
𝑒
𝐷(𝑀 − 𝑁)

2

2𝑇
. (8)

(3) 𝑇 + 𝑁 > 𝑁 ≥ 𝑀. When 𝑀 ≤ 𝑁, there is no interest
earned for the wholesaler. In addition, the wholesaler must
finance all items ordered at time 𝑀 at an interest charged 𝐼

𝑐

per dollar per year and starts to pay off the loan after time 𝑁

(see Figure 3). Hence, the interest charged per year (say IC13)
is

IC13 =
𝑐𝐼
𝑐
𝐷𝑇 [(𝑁 − 𝑀) + (𝑇 + 𝑁 − 𝑀)]

2𝑇

= 𝑐𝐼
𝑐
𝐷 (𝑁 − 𝑀) +

𝑐𝐼
𝑐
𝐷𝑇

2
,

(9)

and the interest earned per year (say IE13) is

IE13 = 0. (10)

Consequently, from (5), (7), and (9), the interest charged
per year for the case with full delay in payments (say IC1) is

IC1 =

{{{{{

{{{{{

{

0, if 𝑀 ≥ 𝑇 + 𝑁,

𝑐𝐼
𝑐
𝐷(𝑇 + 𝑁 − 𝑀)

2

(2𝑇)
, if 𝑇 + 𝑁 ≥ 𝑀 > 𝑁,

𝑐𝐼
𝑐
𝐷 (𝑁 − 𝑀) +

𝑐𝐼
𝑐
𝐷𝑇

2
, if 𝑇 + 𝑁 > 𝑁 ≥ 𝑀.

(11)
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Figure 2: 𝑄 ≥ 𝑄
𝑑
and 𝑁 < 𝑀 ≤ 𝑇 + 𝑁.
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Figure 3: 𝑄 ≥ 𝑄
𝑑
and 𝑀 ≤ 𝑁.

Similarly, from (6), (8), and (10), we have that the interest
earned per year for the case with full delay in payments (say
IE1) is

IE1 =

{{{{{

{{{{{

{

𝑝𝐼
𝑒
𝐷 (𝑀 − 𝑁) −

𝑝𝐼
𝑒
𝐷𝑇

2
, if 𝑀 ≥ 𝑇 + 𝑁,

𝑝𝐼
𝑒
𝐷(𝑀 − 𝑁)

2

(2𝑇)
, if 𝑇 + 𝑁 ≥ 𝑀 > 𝑁,

0, if 𝑇 + 𝑁 > 𝑁 ≥ 𝑀.

(12)

Therefore, the total cost per year for the case with full
delay in payments (denoted by TC1(𝑇)) is given by

TC1 (𝑇) = {
TC11 (𝑇) if 𝑇 ≤ 𝑇

𝑊
,

TC12 (𝑇) if 𝑇 > 𝑇
𝑊
,

(13)

where

TC11 (𝑇) = OC + HC1 + IC1 − IE1

=

{{

{{

{

TC11-1 (𝑇) , if 𝑀 ≥ 𝑇 + 𝑁,

TC11-2 (𝑇) , if 𝑇 + 𝑁 ≥ 𝑀 > 𝑁,

TC11-3 (𝑇) , if 𝑇 + 𝑁 > 𝑁 ≥ 𝑀,

(14)

TC12 (𝑇) = OC + HC2 + IC1 − IE1

=

{{

{{

{

TC12-1 (𝑇) , if 𝑀 ≥ 𝑇 + 𝑁,

TC12-2 (𝑇) , if 𝑇 + 𝑁 ≥ 𝑀 > 𝑁,

TC12-3 (𝑇) , if 𝑇 + 𝑁 > 𝑁 ≥ 𝑀,

(15)

TC11-1 (𝑇) =
𝐴

𝑇
+

(ℎ + 𝑝𝐼
𝑐
)𝐷𝑇

2
− 𝑝𝐼
𝑒
𝐷(𝑀 − 𝑁) , (16)

TC11-2 (𝑇) =
𝐴

𝑇
+

(ℎ + 𝑐𝐼
𝑐
)𝐷𝑇

2

− 𝑐𝐼
𝑐
𝐷(𝑀 − 𝑁) +

(𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀 − 𝑁)

2

2𝑇
,

(17)

TC11-3 (𝑇) =
𝐴

𝑇
+

(ℎ + 𝑐𝐼
𝑐
)𝐷𝑇

2
+ 𝑐𝐼
𝑐
𝐷 (𝑁 − 𝑀) , (18)

TC12-1 (𝑇) =
𝐴

𝑇
+

ℎ𝐷𝑇
𝑊

(2𝑇 − 𝑇
𝑊
) + 𝑘𝐷(𝑇 − 𝑇

𝑊
)
2

2𝑇

− 𝑝𝐼
𝑒
𝐷 (𝑀 − 𝑁) +

𝑝𝐼
𝑒
𝐷𝑇

2
,

(19)

TC12-2 (𝑇) =
𝐴

𝑇
+ ((ℎ𝐷𝑇

𝑊
(2𝑇 − 𝑇

𝑊
) + 𝑘𝐷(𝑇 − 𝑇

𝑊
)
2

+ (𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀 − 𝑁)

2

) × (2𝑇)
−1

)

+
𝑐𝐼
𝑐
𝐷𝑇

2
− 𝑐𝐼
𝑐
𝐷 (𝑀 − 𝑁) ,

(20)
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Figure 4: 𝑄 < 𝑄
𝑑
and 𝑁 < 𝑇 + 𝑁 ≤ 𝑀.

TC12-3 (𝑇) =
𝐴

𝑇
+

ℎ𝐷𝑇
𝑊

(2𝑇 − 𝑇
𝑊
) + 𝑘𝐷(𝑇 − 𝑇

𝑊
)
2

2𝑇

+
𝑐𝐼
𝑐
𝐷𝑇

2
+ 𝑐𝐼
𝑐
𝐷 (𝑁 − 𝑀) .

(21)

Note that TC
1𝑖-1(𝑀 − 𝑁) = TC

1𝑖-2(𝑀 − 𝑁), 𝑖 = 1, 2.

Case 2 (partial delay in payments (𝑇 < 𝑇
𝑑
)). In this case, the

partial delay in payment is permitted where the wholesaler
must take a loan to pay the supplier the amount (1 − 𝛼)𝑐𝐷𝑇

immediately when the order is filled and pay the rest at the
timeM. From the constant sales revenue 𝑝𝐷, the wholesaler
will be able to pay off the loan (1 − 𝛼)𝑐𝐷𝑇 at the time (1 −

𝛼)(𝑐/𝑝)𝑇 + 𝑁. Similar to Case 1, based on the values of 𝑀,
(1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁, and 𝑇 + 𝑁, we have the following three
alternative situations: (1) 𝑀 ≥ 𝑇 + 𝑁, (2) 𝑇 + 𝑁 ≥ 𝑀 ≥

(1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁, and (3) (1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁 ≥ 𝑀. Let us
discuss them accordingly.
(1) 𝑀 ≥ 𝑇 + 𝑁. In this situation, the wholesaler takes a loan
to pay the supplier the amount (1 − 𝛼)𝑐𝐷𝑇 immediately but
receives the revenue after 𝑁. That is, the wholesaler will pay
off the loan from sales revenue at time (1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁

and the interest earned starts from time (1 − 𝛼)(𝑐/𝑝)𝑇 +𝑁 to
𝑀 (see Figure 4). Consequently, the interest charged per year
(say IC21) is

IC21 =
(1 − 𝛼) 𝑐𝐼

𝑐
𝐷𝑇 {𝑁 + [(1 − 𝛼) (𝑐/𝑝) 𝑇 + 𝑁]}

2𝑇

=
(1 − 𝛼) 𝑐𝐼

𝑐
𝐷

2
[2𝑁 + (1 − 𝛼) (

𝑐

𝑝
)𝑇] ,

(22)

and the interest earned per year (say IE21) is

IE21 = ( [𝑝 − (1 − 𝛼) 𝑐] 𝐼
𝑒
𝐷𝑇

×{(𝑀 − 𝑇 − 𝑁) + [𝑀 − (1 − 𝛼) (
𝑐

𝑝
)𝑇 − 𝑁]})

× (2𝑇)
−1

=
[1 − (1 − 𝛼) (𝑐/𝑝)] 𝑝𝐼

𝑒
𝐷

2

× [2 (𝑀 − 𝑁) − (1 − 𝛼) (
𝑐

𝑝
)𝑇 − 𝑇] .

(23)

(2) 𝑇 + 𝑁 ≥ 𝑀 ≥ (1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁. In this situation, the
wholesaler takes a loan to pay the supplier the amount (1 −

𝛼)𝑐𝐷𝑇 immediately but receives the revenue after 𝑁. That is,
thewholesalerwill pays off the loan from sales revenue at time
(1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁 and the interest earned starts from time
(1−𝛼)(𝑐/𝑝)𝑇+𝑁 to𝑀 (see Figure 5). After𝑀, the wholesaler
starts paying for the interest charges with the rate 𝐼

𝑐
on items

sold. As a result, the interest charged per year (say IC22) is

IC22 =
(1 − 𝛼) 𝑐𝐼

𝑐
𝐷𝑇 {𝑁 + [(1 − 𝛼) (𝑐/𝑝) 𝑇 + 𝑁]}

2𝑇

+
𝑐𝐼
𝑐
𝐷(𝑇 + 𝑁 − 𝑀)

2

2𝑇

=
(1 − 𝛼) 𝑐𝐼

𝑐
𝐷

2
[2𝑁 + (1 − 𝛼) (

𝑐

𝑝
)𝑇]

+
𝑐𝐼
𝑐
𝐷(𝑇 + 𝑁 − 𝑀)

2

2𝑇
,

(24)

and the interest earned per year (say IE22) is

IE22 =
𝑝𝐼
𝑒
𝐷[𝑀 − 𝑁 − (1 − 𝛼)(𝑐/𝑝)𝑇]

2

2𝑇
. (25)

(3) (1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁 ≥ 𝑀. In this situation, there is no
interest earned. Due to 𝑇 < 𝑇

𝑑
, the wholesaler takes a loan

to pay the supplier the amount (1 − 𝛼)𝑐𝐷𝑇 immediately but
receives the revenue after 𝑁. The loan will be paid off from
sales revenue at the time (1−𝛼)(𝑐/𝑝)𝑇+𝑁. Furthermore, the
wholesaler starts paying for the interest charges with the rate
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Figure 5: 𝑄 < 𝑄
𝑑
and 𝑁 < (1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁 < 𝑀 ≤ 𝑇 + 𝑁.
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Figure 6: 𝑄 < 𝑄
𝑑
and 𝑁 < 𝑀 < (1 − 𝛼)(𝑐/𝑝)𝑇 + 𝑁 ≤ 𝑇 + 𝑁.

𝐼
𝑐
on items sold after (1−𝛼)(𝑐/𝑝)𝑇+𝑁 (see Figure 6). Hence,

the interest charged per year (say IC23) is

IC23 =
(1 − 𝛼) 𝑐𝐼

𝑐
𝐷𝑇 {𝑁 + [(1 − 𝛼) (𝑐/𝑝) 𝑇 + 𝑁]}

2𝑇

+
𝛼𝑐𝐼
𝑐
𝐷𝑇 [(1 − 𝛼) (𝑐/𝑝) 𝑇 + 𝑁 − 𝑀]

𝑇

+
𝛼𝑐𝐼
𝑐
𝐷𝑇 [𝑇 − (1 − 𝛼) (𝑐/𝑝) 𝑇]

2𝑇

= (1 − 𝛼) 𝑐𝐼
𝑐
𝐷𝑁 +

𝑐𝐼
𝑐
𝐷 (1 − 𝛼) (𝑐/𝑝) 𝑇

2

+
𝛼𝑐𝐼
𝑐
𝐷 [𝑇 + 2 (𝑁 − 𝑀)]

2
,

(26)

and the interest earned per year (say IE23) is

IE23 = 0. (27)

Consequently, from (22), (24), and (26), the interest
charged per year for the case with partial delay in payments
(say IC2) is

IC2 =

{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼) 𝑐𝐼
𝑐
𝐷

2
[2𝑁 + (1 − 𝛼) (

𝑐

𝑝
)𝑇] ,

if 𝑀 ≥ 𝑇 + 𝑁,

(1 − 𝛼) 𝑐𝐼
𝑐
𝐷

2
[2𝑁 + (1 − 𝛼) (

𝑐

𝑝
)𝑇]

+
𝑐𝐼
𝑐
𝐷(𝑇 + 𝑁 − 𝑀)

2

2𝑇
,

if 𝑇 + 𝑁 ≥ 𝑀 ≥ (1 − 𝛼) (
𝑐

𝑝
)𝑇 + 𝑁,

(1 − 𝛼) 𝑐𝐼
𝑐
𝐷𝑁 +

𝑐𝐼
𝑐
𝐷(1 − 𝛼) (𝑐/𝑝) 𝑇

2

+
𝛼𝑐𝐼
𝑐
𝐷 [𝑇 + 2 (𝑁 − 𝑀)]

2
,

if (1 − 𝛼) (
𝑐

𝑝
)𝑇 + 𝑁 ≥ 𝑀.

(28)
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Similarly, from (23), (25), and (27), we have that the interest
earned per year for the case with partial delay in payments
(say IE2) is

IE2 =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

[1 − (1 − 𝛼) (𝑐/𝑝)] 𝑝𝐼
𝑒
𝐷

2

×[2 (𝑀 − 𝑁) − (1 − 𝛼) (
𝑐

𝑝
)𝑇 − 𝑇] ,

if 𝑀 ≥ 𝑇 + 𝑁,

𝑝𝐼
𝑒
𝐷[𝑀 − 𝑁 − (1 − 𝛼) (𝑐/𝑝) 𝑇]

2

2𝑇
,

if 𝑇 + 𝑁 ≥ 𝑀 ≥ (1 − 𝛼) (
𝑐

𝑝
)𝑇 + 𝑁,

0, if (1 − 𝛼) (
𝑐

𝑝
)𝑇 + 𝑁 ≥ 𝑀.

(29)

For convenient, we let V = (1 − 𝛼)(𝑐/𝑝) where 0 ≤ V < 1.
Therefore, the total cost per year for the casewith partial delay
in payments (denoted by TC2(𝑇)) is given by

TC2 (𝑇) = {
TC21 (𝑇) if 𝑇 ≤ 𝑇

𝑊
,

TC22 (𝑇) if 𝑇 > 𝑇
𝑊
,

(30)

where

TC21 (𝑇) = OC + HC1 + IC2 − IE2

=

{{

{{

{

TC21-1 (𝑇) , if 𝑀 ≥ 𝑇 + 𝑁,

TC21-2 (𝑇) , if 𝑇 + 𝑁 ≥ 𝑀 ≥ V𝑇 + 𝑁,

TC21-3 (𝑇) , if V𝑇 + 𝑁 ≥ 𝑀,

(31)

TC22 (𝑇) = OC + HC2 + IC2 − IE2

=

{{

{{

{

TC22-1 (𝑇) , if 𝑀 ≥ 𝑇 + 𝑁,

TC22-2 (𝑇) , if 𝑇 + 𝑁 ≥ 𝑀 ≥ V𝑇 + 𝑁,

TC22-3 (𝑇) , if V𝑇 + 𝑁 ≥ 𝑀,

(32)

TC21-1 (𝑇) =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

(1 − 𝛼) 𝑐𝐼
𝑐
𝐷

2
(2𝑁 + V𝑇)

−
(1 − V) 𝑝𝐼

𝑒
𝐷

2
(2 (𝑀 − 𝑁) − V𝑇 − 𝑇) ,

(33)

TC21-2 (𝑇) =
𝐴

𝑇
+

ℎ𝐷𝑇

2
+

(1 − 𝛼) 𝑐𝐼
𝑐
𝐷

2
(2𝑁 + V𝑇)

+
𝑐𝐼
𝑐
𝐷(𝑇 + 𝑁 − 𝑀)

2

2𝑇

−
𝑝𝐼
𝑒
𝐷(𝑀 − 𝑁 − V𝑇)

2

2𝑇
,

(34)

TC21-3 (𝑇) =
𝐴

𝑇
+

(ℎ + 𝑐𝐼
𝑐
V)𝐷𝑇

2
+ (1 − 𝛼) 𝑐𝐼

𝑐
𝐷𝑁

+
𝛼𝑐𝐼
𝑐
𝐷 [𝑇 + 2 (𝑁 − 𝑀)]

2
,

(35)

TC22-1 (𝑇) =
𝐴

𝑇
+

ℎ𝐷𝑇
𝑊

(2𝑇 − 𝑇
𝑊
) + 𝑘𝐷(𝑇 − 𝑇

𝑊
)
2

2𝑇

+
(1 − 𝛼) 𝑐𝐼

𝑐
𝐷

2
(2𝑁 + V𝑇)

−
(1 − V) 𝑝𝐼

𝑒
𝐷

2
[2 (𝑀 − 𝑁) − V𝑇 − 𝑇] ,

(36)

TC22-2 (𝑇) =
𝐴

𝑇
+

ℎ𝐷𝑇
𝑊

(2𝑇 − 𝑇
𝑊
) + 𝑘𝐷(𝑇 − 𝑇

𝑊
)
2

2𝑇

+
(1 − 𝛼) 𝑐𝐼

𝑐
𝐷

2
(2𝑁 + V𝑇)

+
𝑐𝐼
𝑐
𝐷(𝑇 + 𝑁 − 𝑀)

2

2𝑇

−
𝑝𝐼
𝑒
𝐷(𝑀 − 𝑁 − V𝑇)

2

2𝑇
,

(37)

TC22-3 (𝑇) =
𝐴

𝑇
+

ℎ𝐷𝑇
𝑊

(2𝑇 − 𝑇
𝑊
) + 𝑘𝐷(𝑇 − 𝑇

𝑊
)
2

2𝑇

+
𝑐𝐼
𝑐
V𝐷𝑇

2
+ (1 − 𝛼) 𝑐𝐼

𝑐
𝐷𝑁

+
𝛼𝑐𝐼
𝑐
𝐷 [𝑇 + 2 (𝑁 − 𝑀)]

2
.

(38)

Note that TC2𝑖-1(𝑀 − 𝑁) = TC2𝑖-2(𝑀 − 𝑁) and TC2𝑖-2((𝑀 −

𝑁)/V) ≥ TC2𝑖-3((𝑀 − 𝑁)/V) for 𝑀 > 𝑁, 𝑖 = 1, 2.

Remark 1. When 𝛼 = 1 (i.e., the supplier offers the full delay
in payment regardless of the order quantity), which implies
V = 0, we have TC2𝑖-𝑗(𝑇) = TC1𝑖-𝑗(𝑇), for 𝑖 = 1, 2 and 𝑗 =

1, 2, 3.

Remark 2. When ℎ = 𝑘 (i.e., the capacity in own warehouse
is unlimited), we have TC

𝑖2-𝑗(𝑇) = TC
𝑖1-𝑗(𝑇), for 𝑖 = 1, 2 and

𝑗 = 1, 2, 3.

Remark 3. When 𝛼 = 1 and ℎ = 𝑘, we have TC22-𝑗(𝑇) =

TC21-𝑗(𝑇) = TC12-𝑗(𝑇) = TC11-𝑗(𝑇), for 𝑗 = 1, 2, 3.

Remark 4. (i) When 𝛼 = 0 and ℎ = 𝑘, the model can be
reduced to Ouyang et al. [19].

(ii) When 𝛼 = 1, 𝑄
𝑑
= 0, and ℎ = 𝑘, the model is similar

to Huang [17] and Teng et al. [20].
(iii) When𝑄

𝑑
= 0,𝑁 = 0, and ℎ = 𝑘, the model is similar

to Huang [8].
(iv) When 𝛼 = 1, 𝑄

𝑑
= 0, 𝑁 = 0, and ℎ = 𝑘, the model

can be reduced to Teng [5].
(v) When 𝛼 = 1, 𝑄

𝑑
= 0, 𝑁 = 0, ℎ = 𝑘, and 𝑝 = 𝑐, the

model is the same as Goyal [2].
Therefore, our model is in general framework that

includes numerous previous models such as Goyal [2], Teng
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[5], Huang [8, 17], Ouyang et al. [19], and Teng et al. [20] as
special cases.

4. Theoretical Results

Now, we will determine the optimal length of replenishment
cycle time in years 𝑇

∗ which minimizes the annual total
relevant cost. First, from Remarks 1–3, we can see that the
total relevant cost functions of TC

22-𝑗(𝑇) can be reduced to
TC
11-𝑗(𝑇), TC

12-𝑗(𝑇), and TC
21-𝑗(𝑇) as 𝛼 = 1 or/and ℎ = 𝑘,

where 𝑗 = 1, 2, 3. Here we only discuss how to find the
optimal length of replenishment cycle time in years 𝑇

22
that

minimizes the annual total relevant cost TC
22-𝑗(𝑇), where

𝑗 = 1, 2, 3. Following, we will develop an iterative algorithm
to find the optimal solution 𝑇

∗ for the whole problem.
The first-order necessary condition for TC

22-1(𝑇) to be
minimized is 𝑑TC22-1(𝑇)/𝑑𝑇 = 0 which leads to

𝑇
22-1 = √

2𝐴 + (𝑘 − ℎ)𝐷𝑇
2

𝑊

𝐷[𝑘 + (1 − 𝛼) 𝑐𝐼
𝑐
V + (1 − V2) 𝑝𝐼

𝑒
]
. (39)

Note that 𝑘 > ℎ, 0 ≤ 𝛼 ≤ 1, and 0 ≤ V < 1; and hence
𝑇
22-1 is well defined. Furthermore, the second-order sufficient

condition is

𝑑
2TC22-1 (𝑇)

𝑑𝑇2
=

2𝐴 + (𝑘 − ℎ)𝐷𝑇
2

𝑊

𝑇3
> 0. (40)

Therefore, TC
22-1(𝑇) is a convex function of 𝑇, and 𝑇

22-1 in
(39) satisfies 𝑑TC22-1(𝑇)/𝑑𝑇 = 0. To ensure𝑀 ≥ 𝑇

22-1+𝑁, we
substitute (39) into the inequality 𝑀 ≥ 𝑇

22-1 + 𝑁 and obtain
that

𝑀 ≥ 𝑇
22-1 + 𝑁, if and only if

2𝐴 ≤ [𝑘 + (1 − 𝛼) 𝑐𝐼
𝑐
V + (1 − V2) 𝑝𝐼

𝑒
]𝐷(𝑀 − 𝑁)

2

− (𝑘 − ℎ)𝐷𝑇
2

𝑊
.

(41)

On the other hand, if 2𝐴 > [𝑘+(1−𝛼)𝑐𝐼
𝑐
V+(1−V2)𝑝𝐼

𝑒
]𝐷(𝑀−

𝑁)
2

− (𝑘 − ℎ)𝐷𝑇
2

𝑊
, then we have

𝑑TC22-1 (𝑇)

𝑑𝑇

= [𝑘 + (1 − 𝛼) 𝑐𝐼
𝑐
V + (1 − V2) 𝑝𝐼

𝑒
]𝐷

−
2𝐴 + (𝑘 − ℎ)𝐷𝑇

2

𝑊

𝑇2

< −

[𝑘 + (1 − 𝛼) 𝑐𝐼
𝑐
V + (1 − V2) 𝑝𝐼

𝑒
]𝐷 [(𝑀 − 𝑁)

2

− 𝑇
2

]

2𝑇2

< 0,

(42)

for all𝑇 ∈ (0,𝑀−𝑁]which implies that TC
22-1(𝑇) is a strictly

decreasing function of 𝑇 ∈ (0,𝑀 − 𝑁]. Therefore, TC
22-1(𝑇)

has a minimum value at the boundary point 𝑇 = 𝑀 − 𝑁.

For notational convenience, we let

Δ
1
(𝛼, 𝑘) ≡ [𝑘 + (1 − 𝛼) 𝑐𝐼

𝑐
V + (1 − V2) 𝑝𝐼

𝑒
]𝐷(𝑀 − 𝑁)

2

− (𝑘 − ℎ)𝐷𝑇
2

𝑊
.

(43)

Then we have the following result.

Lemma 5. (1) If 2𝐴 ≤ Δ
1
(𝛼, 𝑘), then 𝑇𝐶22-1(𝑇) has a

minimum value at 𝑇 = 𝑇
22−1

.
(2) If 2𝐴 > Δ

1
(𝛼, 𝑘), then 𝑇𝐶22-1(𝑇) has a minimum value

at 𝑇 = 𝑀 − 𝑁.

Similarly, the first-order necessary condition for TC22-2
(𝑇) to be minimized is 𝑑TC22-2(𝑇)/𝑑𝑇 = 0 which leads to

𝑇
22-2 = √

2𝐴 + (𝑘 − ℎ)𝐷𝑇
2

𝑊
+ (𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀 − 𝑁)

2

𝐷[𝑘 + (1 − 𝛼) 𝑐𝐼
𝑐
V + 𝑐𝐼

𝑐
− 𝑝𝐼
𝑒
V2]

.

(44)

Furthermore, the second-order sufficient condition is

𝑑
2TC
22-2 (𝑇)

𝑑𝑇2

=
2𝐴 + (𝑘 − ℎ)𝐷𝑇

2

𝑊
+ (𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀 − 𝑁)

2

𝑇3
.

(45)

To ensure 𝑇 + 𝑁 ≥ 𝑀 ≥ V𝑇 + 𝑁, we substitute (44) into the
inequality 𝑇

22-2 + 𝑁 ≥ 𝑀 ≥ V𝑇
22-2 + 𝑁, and obtain that

𝑇
22−2

+ 𝑁 ≥ 𝑀 ≥ V𝑇
22−2

+ 𝑁,

if and only if Δ
1
(𝛼, 𝑘) ≤ 2𝐴 ≤ Δ

2
(𝛼, 𝑘) ,

(46)

where Δ
1
(𝛼, 𝑘) is defined as above, and

Δ
2
(𝛼, 𝑘) ≡ (𝑝 − 𝑐) 𝐼

𝑐
𝐷(𝑀 − 𝑁)

2

+ (𝑘 + 𝑐𝐼
𝑐
)
𝐷(𝑀 − 𝑁)

2

V2
− (𝑘 − ℎ)𝐷𝑇

2

𝑊
.

(47)

It is noted that if 2𝐴 ≥ Δ
1
(𝛼, 𝑘), then we have

2𝐴 + (𝑘 − ℎ)𝐷𝑇
2

𝑊
+ (𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀 − 𝑁)

2

≥ [𝑘 + (1 − 𝛼) 𝑐𝐼
𝑐
V + 𝑐𝐼

𝑐
− 𝑝𝐼
𝑒
V2]𝐷(𝑀 − 𝑁)

2

= [𝑘 + 𝑐𝐼
𝑐
+ 𝑝V2 (𝐼

𝑐
− 𝐼
𝑒
)]𝐷(𝑀 − 𝑁)

2

> 0.

(48)

Therefore, 𝑇
22-2 in (44) is well defined and 𝑑

2TC22-2
(𝑇)/𝑑𝑇

2

> 0, which implies that TC
22-2(𝑇) is a convex

function of 𝑇.
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On the other hand, if 2𝐴 > Δ
2
(𝛼, 𝑘), then we have

𝑑TC22-2 (𝑇)

𝑑𝑇

= [𝑘 + 𝑐𝐼
𝑐
+ 𝑝V2 (𝐼

𝑐
− 𝐼
𝑒
)]𝐷

−
2𝐴 + (𝑘 − ℎ)𝐷𝑇

2

𝑊
+ (𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀 − 𝑁)

2

𝑇2

< [𝑘 + 𝑐𝐼
𝑐
+ 𝑝V2 (𝐼

𝑐
− 𝐼
𝑒
)]𝐷[1 −

(𝑀 − 𝑁)
2

V2𝑇2
]

< 0,

(49)

for all 𝑇 ∈ (𝑀−𝑁, (𝑀−𝑁)/V) which implies that TC
22-2(𝑇)

is a strictly decreasing function of 𝑇 ∈ [𝑀 − 𝑁, (𝑀 − 𝑁)/V].
Therefore, TC

22-2(𝑇) has a minimum value at the boundary
point 𝑇 = (𝑀 − 𝑁)/V.

If 2𝐴 < Δ
1
(𝛼, 𝑘), then we have

𝑑TC22-2 (𝑇)

𝑑𝑇

= [𝑘 + 𝑐𝐼
𝑐
+ 𝑝V2 (𝐼

𝑐
− 𝐼
𝑒
)]𝐷

−
2𝐴 + (𝑘 − ℎ)𝐷𝑇

2

𝑊
+ (𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀 − 𝑁)

2

𝑇2

> [𝑘 + 𝑐𝐼
𝑐
+ 𝑝V2 (𝐼

𝑐
− 𝐼
𝑒
)]𝐷[1 −

(𝑀 − 𝑁)
2

𝑇2
]

> 0,

(50)

for all 𝑇 ∈ (𝑀−𝑁, (𝑀−𝑁)/V) which implies that TC22-2(𝑇)

is a strictly increasing function of 𝑇 ∈ [𝑀 − 𝑁, (𝑀 − 𝑁)/V].
Therefore, TC22-2(𝑇) has a minimum value at the boundary
point 𝑇 = 𝑀 − 𝑁.

From above arguments, we have proved the following
result.

Lemma 6. (1) If Δ
1
(𝛼, 𝑘) ≤ 2𝐴 ≤ Δ

2
(𝛼, 𝑘), then 𝑇𝐶

22-2(𝑇)

has a minimum value at 𝑇 = 𝑇
22−2

.
(2) If 2𝐴 > Δ

2
(𝛼, 𝑘), then𝑇𝐶

22-2(𝑇) has a minimum value
at 𝑇 = (𝑀 − 𝑁)/V.

(3) If 2𝐴 < Δ
1
(𝛼, 𝑘), then𝑇𝐶

22-2(𝑇) has a minimum value
at 𝑇 = 𝑀 − 𝑁.

By using analogous discussions, we can easily obtain the
values of 𝑇 (say 𝑇

22-3) which minimizes TC22-3(𝑇) is

𝑇
22-3 = √

2𝐴 + (𝑘 − ℎ)𝐷𝑇
2

𝑊

𝐷(𝑘 + 𝑐𝐼
𝑐
V + 𝛼𝑐𝐼

𝑐
)
. (51)

To ensure V𝑇 + 𝑁 ≥ 𝑀, we substitute (51) into the inequality
and V𝑇

22-2 + 𝑁 ≥ 𝑀 and obtain that
V𝑇
22-3 + 𝑁 ≥ 𝑀, if and only if 2𝐴 ≥ Δ

3
(𝛼, 𝑘) , (52)

where

Δ
3
(𝛼, 𝑘) ≡ (𝑘 + 𝑐𝐼

𝑐
V + 𝛼𝑐𝐼

𝑐
)
𝐷(𝑀 − 𝑁)

2

V2
− (𝑘 − ℎ)𝐷𝑇

2

𝑊
.

(53)

Conversely, if 2𝐴 < Δ
3
(𝛼, 𝑘), then we have

𝑑TC22-3 (𝑇)

𝑑𝑇
= −

2𝐴 + (𝑘 − ℎ)𝐷𝑇
2

𝑊

2𝑇2
+

𝐷 (𝑘 + 𝑐𝐼
𝑐
V + 𝛼𝑐𝐼

𝑐
)

2

>

𝐷 (𝑘 + 𝑐𝐼
𝑐
V + 𝛼𝑐𝐼

𝑐
) [(V𝑇)

2

− (𝑀 − 𝑁)
2

]

2V2𝑇2

> 0.

(54)

Therefore, TC22-3(𝑇) is s strictly increasing function of 𝑇 ∈

[(𝑀−𝑁)/V,∞), which implies that TC22-3(𝑇) has aminimum
value at the boundary point 𝑇 = (𝑀 − 𝑁)/V. From above
arguments, we have proved the following result.

Lemma 7. (1) If 2𝐴 ≥ Δ
3
(𝛼, 𝑘), then 𝑇C22-3(𝑇) has a mini-

mum value at 𝑇 = 𝑇
22−3

.
(2) If 2𝐴 < Δ

1
(𝛼, 𝑘), then 𝑇𝐶22-3(𝑇) has a minimum value

at 𝑇 = (𝑀 − 𝑁)/V.

It is obvious that Δ
2
(𝛼, 𝑘) > Δ

1
(𝛼, 𝑘) and Δ

2
(𝛼, 𝑘) >

Δ
3
(𝛼, 𝑘). Consequently, combining Lemmas 5, 6, and 7 and

the facts that TC22-1(𝑀 − 𝑁) = 𝑇𝑅𝐶
22-2(𝑀 − 𝑁) and

TC
22-2((𝑀 − 𝑁/V)) ≥ TC

22-3((𝑀 − 𝑁/V)) for 𝑀 > 𝑁, we
can obtain a table (Table 1) to determine the optimal length
of cycle time 𝑇 that minimizes the annual total relevant cost
TC22(𝑇) (say 𝑇

22
).

For Remarks 1–3, we can obtain the following tables
(Tables 2–4) to determine the optimal lengths of cycle
time 𝑇 that minimize the annual total relevant costs
TC11(𝑇),TC12(𝑇), and TC21(𝑇), respectively (say 𝑇

11
, 𝑇
12
, and

𝑇
21
).
Next, we will can establish the following algorithm to

determine the optimal length of cycle time 𝑇
∗.

Algorithm.

Step 1. Compare 𝑇
𝑑
with 𝑇

𝑊
. If 𝑇
𝑑

≥ 𝑇
𝑊
, then go to Step 2;

otherwise, go to Step 3.

Step 2

Step 2.1. Calculate the value of 𝑇
12
from Table 3 and compare

it with 𝑇
𝑑
. If 𝑇
12

> 𝑇
𝑑
, then set 𝑇

1
= 𝑇
12

and evaluate
TC1(𝑇1) = TC12(𝑇12); otherwise, 𝑇12 is not a feasible solution.
Set TC1(𝑇) = +∞.

Step 2.2. Calculate 𝑇
22

from Table 1 and compare it with 𝑇
𝑑

and 𝑇
𝑊
. If 𝑇
𝑑

≥ 𝑇
22

> 𝑇
𝑊
, then set 𝑇

2
= 𝑇
22

and evaluate
TC2(𝑇2) = TC22(𝑇22); otherwise,𝑇22 is not a feasible solution.
Set TC2(𝑇) = +∞.

Step 2.3. Calculate 𝑇
21

from Table 4 and compare it with
𝑇
𝑊
. If 𝑇

𝑊
≥ 𝑇
21
, then set 𝑇

2
= 𝑇
21

and evaluate
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Table 1: The optimal length of replenishment cycle time 𝑇
22
under various cases.

Situation Case Condition TC
22
(𝑇
22
) 𝑇

22

𝑀 > 𝑁

Δ
1
(𝛼, 𝑘) > Δ

3
(𝛼, 𝑘)

2𝐴 > Δ
2
(𝛼, 𝑘) TC

22-3(𝑇22-3) 𝑇
22-3

Δ
2
(𝛼, 𝑘) ≥ 2𝐴 ≥ Δ

1
(𝛼, 𝑘) min {TC

22-2 (𝑇22-2) ,TC22-3 (𝑇22-3)} 𝑇
22-2 or 𝑇22-3

Δ
1
(𝛼, 𝑘) ≥ 2𝐴 ≥ Δ

3
(𝛼, 𝑘) min {TC

22-1 (𝑇22-1) ,TC22-3 (𝑇22-3)} 𝑇
22-1 or 𝑇22-3

2𝐴 < Δ
3
(𝛼, 𝑘) min {TC

22-1(𝑇22-1),TC22-3((𝑀 − 𝑁)/𝑣)} 𝑇
22-1 or (𝑀 − 𝑁)/𝑣

Δ
1
(𝛼, 𝑘) < Δ

3
(𝛼, 𝑘)

2𝐴 ≥ Δ
2
(𝛼, 𝑘) TC

22-3(𝑇22-3) 𝑇
22-3

Δ
2
(𝛼, 𝑘) > 2𝐴 > Δ

3
(𝛼, 𝑘) min {TC

22-2 (𝑇22-2) ,TC22-3 (𝑇22-3)} 𝑇
22-2 or 𝑇22-3

Δ
3
(𝛼, 𝑘) ≥ 2𝐴 ≥ Δ

1
(𝛼, 𝑘) min {TC

22-2(𝑇22-2),TC22-3((𝑀 − 𝑁)/𝑣)} 𝑇
22-2 or (𝑀 − 𝑁)/𝑣

2𝐴 < Δ
1
(𝛼, 𝑘) min {TC

22-1(𝑇22-1),TC22-3((𝑀 − 𝑁)/𝑣)} 𝑇
22-1 or (𝑀 − 𝑁)/𝑣

𝑀 ≤ 𝑁 TC
22-3(𝑇22-3) 𝑇

22-3

Table 2: The optimal length of replenishment cycle time 𝑇
11
under

various cases.

Situation Condition TC11(𝑇11) 𝑇
11

𝑀 > 𝑁
2𝐴 ≥ Δ

1
(1, ℎ) TC

11-2(𝑇11-2), 𝑇
11-2

2𝐴 < Δ
1
(1, ℎ) TC

11-1(𝑇11-1), 𝑇
11-1

𝑀 ≤ 𝑁 TC
11-3(𝑇11-3) 𝑇

11-3

where 𝑇
11-1 = √2𝐴/[(ℎ + 𝑝𝐼

𝑒
)𝐷], 𝑇

11-2 =

√[2𝐴 + (𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀−𝑁)

2

]/[(ℎ + 𝑐𝐼
𝑐
)𝐷], and 𝑇

11-3 =

√2𝐴/[(ℎ + 𝑐𝐼
𝑐
)𝐷].

Table 3: The optimal length of replenishment cycle time 𝑇
12
under

various cases.

Situation Condition TC
12
(𝑇
12
) 𝑇

12

𝑀 > 𝑁
2𝐴 ≥ Δ

1
(1, 𝑘) TC

12-2(𝑇12-2), 𝑇
12-2

2𝐴 < Δ
1
(1, 𝑘) TC

12-1(𝑇12-1), 𝑇
12-1

𝑀 ≤ 𝑁 TC
12-3(𝑇12-3) 𝑇

12-3

where 𝑇
12-1 = √[2𝐴 + (𝑘 − ℎ)𝐷𝑇

2

𝑊
]/(𝑘 + 𝑝𝐼

𝑒
)𝐷, 𝑇

12-2 =

√[2𝐴 + (𝑐𝐼
𝑐
− 𝑝𝐼
𝑒
)𝐷(𝑀−𝑁)

2

+ (𝑘 − ℎ)𝐷𝑇
2

𝑊
]/[(𝑘 + 𝑐𝐼

𝑐
)𝐷], and

𝑇
12-3 = √[2𝐴 + (𝑘 − ℎ)𝐷𝑇

2

𝑊
]/[(𝑘 + 𝑐𝐼

𝑐
)𝐷].

TC2(𝑇2) = TC21(𝑇21); otherwise,𝑇21 is not a feasible solution.
Set TC2(𝑇) = +∞. Go to Step 4.

Step 3

Step 3.1. Calculate 𝑇
12

from Table 3 and compare it with
𝑇
𝑊
. If 𝑇

12
> 𝑇
𝑊
, then set 𝑇

1
= 𝑇
12

and evaluate
TC1(𝑇1) = TC12(𝑇12); otherwise, 𝑇12 is not a feasible solution.
Set TC1(𝑇) = +∞.

Step 3.2. Calculate 𝑇
11

from Table 2 and compare it with 𝑇
𝑑

and 𝑇
𝑊
. If 𝑇
𝑊

≥ 𝑇
11

> 𝑇
𝑑
, then set 𝑇

1
= 𝑇
11

and evaluate
TC1(𝑇1) = TC11(𝑇11); otherwise, 𝑇11 is not a feasible solution.
Set TC1(𝑇) = +∞.

Step 3.3. Calculate 𝑇
21
from Table 4 and compare it with 𝑇

𝑑
.

If 𝑇
𝑑

≥ 𝑇
21
, then set 𝑇

2
= 𝑇
21

and evaluate TC2(𝑇2) =

TC21(𝑇21); otherwise, 𝑇
21

is not a feasible solution. Set
TC2(𝑇) = +∞. Go to Step 4.

Step 4. Find Min
𝑖=1,2

TC
𝑖
(𝑇). Let TC(𝑇

∗

) = Min
𝑖=1,2

TC
𝑖
(𝑇),

and then 𝑇
∗ is the optimal solution.

5. Numerical Example

To illustrate the previous results, we use a numerical example
as follows.

Example 1. Given 𝐴 = $100/order, 𝑝 = $80/unit, 𝑐 =

$50/unit, 𝐷 = 2500units/year, 𝑘 = $12/unit/year, ℎ =

$10/unit/year, 𝐼
𝑐

= $0.15/$/year, 𝐼
𝑒

= $0.1/$/year, 𝑀 =

0.25 years, and 𝑁 = 0.25 years, according to Algorithm in
the previous section, we obtain the optimal cycle time and
the optimal order quantity for different parameters of 𝛼 ∈

{0.2, 0.5, 0.8}, 𝑊 ∈ {100, 200, 300}, and 𝑄
𝑑

∈ {100, 200, 300}

as shown in Table 5.
From the results of Table 5, the following observations

can be made.

(1) The wholesaler will determine whether to enjoy full
or partial delay in payments based on the value of
the permittedminimumorder quantitywith full delay
in payments. For the low permitted minimum order
quantity with full delay in payments (e.g., 𝑄

𝑑
= 100),

the wholesaler will take the fully permissible delay
and pay at the end of𝑀. Otherwise, if the value of𝑄

𝑑

is high enough (e.g., 𝑄
𝑑

≥ 200), then the wholesaler
will take a loan to pay its supplier the partial payment
of (1 − 𝛼)𝑐𝑄 immediately when the order is received.

(2) The wholesaler will determine whether to rent an
additional warehouse based on the value of the
capacity in ownwarehouse.That is, when the capacity
in own warehouse is low (e.g., 𝑊 = 100), the
wholesaler will need to rent an additional warehouse
to satisfy more goods in stocks. If the capacity in
own warehouse is high enough (e.g., 𝑊 ≥ 200),
then the wholesaler will no longer rent an additional
warehouse.

(3) For the case of partial delay in payments (𝑄
𝑑
≥ 200),

when the value of the fraction of the delay payments
permitted by the supplier increases, all the optimal
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Table 4: The optimal length of replenishment cycle time 𝑇
21
under various cases.

Situation Case Condition TC
21
(𝑇
21
) 𝑇

21

𝑀 > 𝑁

Δ
1
(𝛼, ℎ) > Δ

3
(𝛼, ℎ)

2𝐴 > Δ
2
(𝛼, ℎ) TC

21-3(𝑇21-3) 𝑇
21-3

Δ
2
(𝛼, ℎ) ≥ 2𝐴 ≥ Δ

1
(𝛼, ℎ) min{TC

21-2(𝑇21-2), TC
21-3(𝑇21-3)} 𝑇

21-2 or 𝑇21-3
Δ
1
(𝛼, ℎ) ≥ 2𝐴 ≥ Δ

3
(𝛼, ℎ) min{TC

21-1(𝑇21-1),TC21-3(𝑇21-3)} 𝑇
21-1 or 𝑇21-3

2𝐴 < Δ
3
(𝛼, ℎ) min{TC

21-1(𝑇21-1),TC21-3((𝑀 − 𝑁)/𝑣)} 𝑇
21-1 or (𝑀 − 𝑁)/𝑣

Δ
1
(𝛼, ℎ) < Δ

3
(𝛼, ℎ)

2𝐴 ≥ Δ
2
(𝛼, ℎ) TC

21-3(𝑇21-3) 𝑇
21-3

Δ
2
(𝛼, ℎ) > 2𝐴 > Δ

3
(𝛼, ℎ) min{TC

21-2(𝑇21-2),TC21-3(𝑇21-3)} 𝑇
21-2 or 𝑇21-3

Δ
3
(𝛼, ℎ) ≥ 2𝐴 ≥ Δ

1
(𝛼, ℎ) min{TC

21-2(𝑇21-2),TC21-3((𝑀 − 𝑁)/𝑣)} 𝑇
21-2 or (𝑀 − 𝑁)/𝑣

2𝐴 < Δ
1
(𝛼, ℎ) min{TC

21-1(𝑇21-1),TC21-3((𝑀 − 𝑁)/𝑣)} 𝑇
21-1 or (𝑀 − 𝑁)/𝑣

𝑀 ≤ 𝑁 TC
21-3(𝑇21-3) 𝑇

21-3

where 𝑇
21-1 = √2𝐴/{𝐷[ℎ + (1 − 𝛼)𝑐𝐼𝑐𝑣 + (1 − 𝑣

2
)𝑝𝐼
𝑒
]}, 𝑇
21-2 = √[2𝐴 + (𝑐𝐼𝑐 − 𝑝𝐼𝑒)𝐷(𝑀−𝑁)

2

]/{𝐷[ℎ + 𝑐𝐼
𝑐
+ (1 − 𝛼)𝑐𝐼

𝑐
𝑣 − 𝑝𝐼

𝑒
𝑣
2
]}, and 𝑇

21-3 =

√2𝐴/[𝐷(ℎ + 𝑐𝐼
𝑐
𝑣 + 𝛼𝑐𝐼

𝑐
)].

Table 5: Optimal solutions of Example 1.

𝛼 𝑊 𝑄
𝑑

𝑇
∗

𝑄
∗ TC (𝑇

∗

) Full/partial delay in payments Rented warehouse

0.2

100
100 𝑇

12-3 = 0.0653 163.299 2984.34 Full Yes
200 𝑇

22-3 = 0.0694 173.623 6545.00 Partial Yes
300 𝑇

22-3 = 0.0694 173.623 6545.00 Partial Yes

200
100 𝑇

11-3 = 0.0676 169.031 2965.05 Full No
200 𝑇

21-3 = 0.0724 181.071 6511.34 Partial No
300 𝑇

21-3 = 0.0724 181.071 6511.34 Partial No

300
100 𝑇

11-3 = 0.0676 169.031 2965.05 Full No
200 𝑇

21-3 = 0.0724 181.071 6511.34 Partial No
300 𝑇

21-3 = 0.0724 181.071 6511.34 Partial No

0.5

100
100 𝑇

12-3 = 0.0653 163.299 2984.34 Full Yes
200 𝑇

22-3 = 0.0678 169.526 5211.12 Partial Yes
300 𝑇

22-3 = 0.0678 169.526 5211.12 Partial Yes

200
100 𝑇

11-3 = 0.0676 169.031 2960.63 Full No
200 𝑇

21-3 = 0.0705 176.261 5180.45 Partial No
300 𝑇

21-3 = 0.0705 176.261 5180.45 Partial No

300
100 𝑇

11-3 = 0.0676 169.031 2960.63 Full No
200 𝑇

21-3 = 0.0705 176.261 5180.45 Partial No
300 𝑇

21-3 = 0.0705 176.261 5180.45 Partial No

0.8

100
100 𝑇

12-3 = 0.0653 163.299 2984.34 Full Yes
200 𝑇

22-3 = 0.0663 165.707 3875.57 Partial Yes
300 𝑇

22-3 = 0.0663 165.707 3875.57 Partial Yes

200
100 𝑇

11-3 = 0.0676 169.031 2958.43 Full No
200 𝑇

21-3 = 0.0687 171.815 3847.61 Partial No
300 𝑇

21-3 = 0.0687 171.815 3847.61 Partial No

300
100 𝑇

11-3 = 0.0676 169.031 2958.43 Full No
200 𝑇

21-3 = 0.0687 171.815 3847.61 Partial No
300 𝑇

21-3 = 0.0687 171.815 3847.61 Partial No

values of 𝑇
∗, 𝑄∗, and TC(𝑇

∗

) decrease. The simple
economic explanation for this is that the larger the
fraction of the delay payments permitted, the lower
the length of replenishment cycle, order quantity, and
total relevant cost will be. That is, the wholesaler will
reduce the order quantity to enjoy the benefit of delay
in payments when the fraction of the delay payments
permitted by the supplier increases.

Example 2. This example discusses the influences of changes
in wholesaler’s and retailer’s trade credit periods on 𝑇

∗, 𝑄∗,
and TC(𝑇

∗

) of Example 1. For convenience, the case with
fixed 𝛼 = 0.5, 𝑊 = 100, and 𝑄

𝑑
= 200 is taken into

account. According to algorithm in the previous section, we
obtain the optimal cycle time and the optimal order quantity
for different parameters of 𝑀 ∈ {0.2, 0.25, 0.3} and 𝑁 ∈

{0.2, 0.25, 0.3} as shown in Table 6.
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Table 6: Optimal solutions for various 𝑀 and 𝑁.

𝑀 𝑁 𝑇
∗

𝑄
∗ TC(𝑇

∗

)

0.2
0.2 𝑇

22-3 = 0.0678 169.526 4742.37
0.25 𝑇

22-3 = 0.0678 169.526 5679.87
0.30 𝑇

22-3 = 0.0678 169.526 6617.37

0.25
0.2 𝑇

22-2 = 0.0642 160.469 4241.82
0.25 𝑇

22-3 = 0.0678 169.526 5211.12
0.30 𝑇

22-3 = 0.0678 169.526 6148.62

0.3
0.2 𝑇

22-1 = 0.0639 159.693 3556.24
0.25 𝑇

22-2 = 0.0642 160.469 4710.57
0.30 𝑇

22-3 = 0.0678 169.526 5649.20

Table 7: Effect of changes in major parameters of Example 2.

Parameter % change % change in
𝑇
∗

𝑄
∗ TC(𝑇

∗

)

𝐴

−20 −10.29 −10.29 −7.74
−10 −5.01 −5.01 −3.77
10 4.77 4.77 3.59
20 9.33 9.33 7.02

𝑝

−20 2.16 2.16 2.00
−10 1.10 1.10 1.00
10 −1.14 −1.14 −0.99
20 −2.31 −2.31 −1.98

𝑐

−20 1.98 1.98 −10.73
−10 0.96 0.96 −5.37
10 −0.91 −0.91 5.38
20 −1.78 −1.78 10.76

𝐷

−20 11.54 −10.77 −13.06
−10 5.28 −5.24 −6.42
10 −4.54 5.01 6.24
20 −8.50 9.80 12.33

𝑘

−20 4.11 4.11 −0.70
−10 1.94 1.94 −0.34
10 −1.76 −1.76 0.31
20 −3.35 −3.35 0.60

ℎ

−20 1.93 1.93 −3.26
−10 0.97 0.97 −1.63
10 −0.98 −0.98 1.62
20 −1.97 −1.97 3.23

𝐼
𝑐

−20 2.24 2.24 −9.44
−10 1.08 1.08 −4.72
10 −1.00 −1.00 4.71
20 −1.92 −1.92 9.41

𝐼
𝑒

−20 2.01 2.01 0.64
−10 1.01 1.01 0.33
10 −1.03 −1.03 −0.33
20 −2.09 −2.09 −0.67

From the results in Table 5, the following observations
can be made.

(1) The optimal total cost per year decreases when the
value of 𝑀 increases or the value of 𝑁 decreases.
That is, it is benefit for the wholesaler to lengthen the
wholesaler’s trade credit period in years offered by the
supplier or shorten the retailer’s trade credit period in
years offered by the wholesaler.

(2) For the high value of 𝑀 (e.g., 𝑀 = 0.3), the optimal
order quantity increases as the value of N increases.

(3) For the high value of 𝑁 (e.g., 𝑁 = 0.2), the optimal
order quantity decreases as the value of 𝑀 increases.

Example 3. Here we discuss the influences of changes in
major parameters 𝐴, 𝑝, 𝑐, 𝐷,𝑘, ℎ, 𝐼

𝑐
, and 𝐼

𝑒
on 𝑇
∗, 𝑄∗, and

TC(𝑇
∗

) of Example 2. For convenience, the case with fixed
𝑀 = 0.25 and 𝑁 = 0.2 is taken into account. The sensitivity
analysis is performed by changing each of the parameters by
−20%, −10%, +10%, and +20%, taking one parameter at a
time and keeping the remains unchanged.The computational
results are shown in Table 7.

On the basis of the results of Table 7, the following
observations can be made.

(1) The optimal length of replenishment cycle 𝑇
∗, the

optimal order quantity 𝑄
∗, and the optimal total cost

per year TC(𝑇
∗

) increase with the increase in the
value of 𝐴.

(2) It is obvious that all the values of 𝑇∗,𝑄∗, and TC(𝑇
∗

)

decrease as the revenue parameter 𝑝 or 𝐼
𝑒
increases.

That is, both selling price per unit and interest earned
per dollar per year have negative effects on the length
of replenishment cycle, order quantity, and the annual
total relevant cost.

(3) When the value of 𝑐, 𝑘, ℎ, or 𝐼
𝑐
decreases, the length of

replenishment cycle and order quantity decrease but
the total relevant cost increases.The simple economic
explanation for this is that the larger cost parameters
(purchasing cost, holding cost, and interest charged
per dollar per year), the lower the length of replen-
ishment cycle and order quantity, while the larger the
annual total relevant cost will be.

(4) The value of 𝑇
∗ decreases while the values 𝑄

∗ and
TC(𝑇

∗

) increase as the parameter 𝐷 increases.

6. Conclusions

In this paper, we extended the previous economic order
quantity (EOQ)models under two-level trade credit to reflect
the following real-life situations: (1) the storage capacity is
limited; (2) the supplier offers the retailer a partial upstream
trade credit linked to order quantity; (3) the upstream
trade credit may be longer than, equal to, or less than the
downstream trade credit; and (4) the interest charged per
dollar per year may be larger than, equal to, or less than the
interest earned per dollar per year. In theoretical results, we
studied the necessary and sufficient conditions for finding
the optimal solution under various situations in Tables 1–
4. Furthermore, we established a useful algorithm to obtain
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the optimal solution. Finally, we have provided numerical
examples and sensitivity analysis with major parameters to
illustrate the proposed model and understand managerial
insights. Our model is in general framework that includes
numerous previous models such as Goyal [2], Teng [5],
Huang [8, 17], Ouyang et al. [19], and Teng et al. [20] as
special cases. It is our belief that our work will make some
innovational and significant contributions for a wholesaler
to determine his/her optimal lot size simultaneously when
facing the real-life situations.
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